Algoritmos

TensorFlow: Text Embedding com Paragraph2vec

Esse artigo é sobre a implementação do Paragraph2vec no TensorFlow. Paragraph2vec é um par de modelos de aprendizado não supervisionado para criação de uma representação vetorial de documentos com texto em linguagem natural. O Paragraph2vec é similar ao Word2vec usado para representação de palavras, e também apresenta características semânticas. Nesse artigo, o Paragraph2vec é usado em uma aplicação de análise de sentimento que classifica comentários do Rotten Tomatoes como positivo ou negativo.

TensorFlow: Word Embedding com Word2vec

Esse artigo é sobre a implementação do Word2vec no TensorFlow. Word2vec é um par de modelos de aprendizado não supervisionado para criação de uma representação vetorial de palavras presentes em textos que usam linguagem natural. A representação é condicionada à distribuição do texto e apresenta características semânticas. Palavras com significado similar tem vetores próximos e operações aritméticas formam expressões que fazem sentido. Nesse artigo, o Word2vec é usado em uma aplicação para consulta de palavras similares.

TensorFlow: Recomendação com ALS (Collaborative Filtering)

Esse artigo é sobre a análise do ALS implementado no TensorFlow. O ALS é um método para fatoração de matriz usado como algoritmo de Collaborative Filtering em Sistemas de Recomendação. A análise consiste no treinamento e tuning desse algoritmo e a avaliação do erro final. Para comparação, o mesmo algoritmo é implementado com o Spark. A metodologia usada tem características peculiares de como a Recomendação e o ALS funcionam. O resultado mostra que o Spark tem performance melhor que o TensorFlow no erro final.

Otimização dos parâmetros do Spark ALS (Collaborative Filtering) usando MOE

Esse tutorial é sobre otimização de parâmetros em modelos de machine learning. Para esse tutorial, a ferramenta utilizada é o MOE, Metric Optimization Engine, desenvolvido pelo Yelp que implementa o algoritmo de busca usando Gaussian Process. O algoritmo escolhido para ter os parâmetros otimizados é o Collaborative Filtering baseado na fatoração da matriz de preferências. De forma genérica, esse é um processo que pode ser facilmente adaptado para outros algoritmos e permite sistematizar a árdua tarefa de escolher os melhores parâmetros para um modelo.